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A series of experiments were performed to study the absolute instability of Type I
travelling crossflow modes in the boundary layer on a smooth disk rotating at
constant speed. The basic flow agreed with analytic theory, and the growth of natural
disturbances matched linear theory predictions. Controlled temporal disturbances
were introduced by a short-duration air pulse from a hypodermic tube located above
the disk and outside the boundary layer. The air pulse was positioned just outboard
of the linear-theory critical radius for Type I crossflow modes. A hot-wire sensor
primarily sensitive to the azimuthal velocity component, was positioned at different
spatial (r, θ) locations on the disk to document the growth of disturbances produced
by the air pulses. Ensemble averages conditioned on the air pulses revealed wave
packets that evolved in time and space. Two amplitudes of air pulses were used.
The lower amplitude was verified to produced wave packets with linear amplitude
characteristics. The space–time evolution of the leading and trailing edges of the
wave packets were followed past the critical radius for the absolute instability, rcA

.
With the lower amplitudes, the spreading of the disturbance wave packets did not
continue to grow in time as rcA

was approached. Rather, the spreading of the trailing
edge of the wave packet decelerated and asymptotically approached a constant. This
result supports previous linear DNS simulations where it was concluded that the
absolute instability does not produce a global mode and that linear disturbance wave
packets are dominated by the convective instability. The larger-amplitude disturbances
were found to produce larger temporal spreading of the wave packets. This was
accompanied by a sharp growth in the wave packet amplitude past rcA

. Explanations
for this are discussed.

1. Introduction
The boundary-layer flow over a rotating disk in a quiescent fluid has frequently

been used as a canonical three-dimensional flow which exemplifies the crossflow
instability. In this flow, the instability appears as outward-spiralling waves. These
were first detected experimentally in the hot-wire measurements of Smith (1946). The
theoretical analysis accompanying experimental results followed later in the classic
paper by Gregory, Stuart & Walker (1955).

In theory, the rotating disk flow is attractive because the mean flow has an exact
solution. Malik, Wilkinson & Orszag (1981) developed a linear stability analysis of
this basic flow that was used to predict the location of transition to turbulence
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by an eN extrapolation. This produced a satisfactory comparison to the transition
locations of previous experiments such as those of Gregory et al. (1955), Fedorov
et al. (1976) and Kobayashi, Kohama & Takamadate (1980), that were based on flow
visualization.

Flow visualization of rotating disks tends to emphasize stationary mode
development because the modes are fixed with respect to the disk frame of motion.
Moreover, stationary modes most often dominate over the theoretically more amplified
travelling modes because of their sensitivity to minute surface roughness. For example,
Wilkinson & Malik (1985) traced the origin of stationary modes to small randomly
placed dust particles on the surface of a ‘clean’ disk. Corke & Knasiak (1994, 1998)
and Corke & Matlis (2004) exploited this by depositing arrays of ink dots on the disk
surface to enhance a narrow band of azimuthal and radial wavenumber crossflow
modes.

The emphasis of the experiments of Corke & Knasiak and Corke & Matlis
was on possible resonant interactions between stationary and travelling Type I
crossflow modes. The earlier work used a single hot-wire sensor. The time series were
decomposed into separate velocity fluctuations associated with stationary (moving
with the disk surface velocity) and travelling modes. Cross-bicoherence analysis of
the separate time series revealed a triad phase locking between amplified travelling
modes and otherwise linearly damped low azimuthal mode number (of the order
of 3 to 5) stationary modes. Subsequent measurements by Corke & Matlis made
using a pair of closely spaced sensors, verified wavenumber matching for these modes
that confirmed a triad resonance. These results suggested a mechanism for the low
azimuthal wavenumber transition front observed in flow visualization on rotating
disks such as that of Kobayashi et al. (1980).

The analysis by Lingwood (1995) indicated that the rotating disk flow is absolutely
unstable. As observational evidence of this, he suggested that values of the transition
Reynolds number taken from experimental studies, including those cited above that
are primarily based on flow visualization, varied by less than 3 % of the absolute
instability critical Reynolds number, RcA

= 513 (corrected to be 507 by Lingwood,
1997). The coincidence of the transition Reynolds number is, however, not supported
by the results from Wilkinson & Malik (1985) who found in careful low-disturbance
experiments using hot-wire evidence to document transition, that 543 � Retr � 556,
placing the average about 8 % higher than RcA

.
Lingwood’s (1995) prediction came from a linear stability analysis of the rotating-

disk boundary layer that considers the growth of stationary and travelling waves.
The viscous analysis assumed a locally parallel flow, streamline curvature and
Coriolis effects. It indicated that a critical Reynolds number (or critical radius for a
given rotation speed) existed at which disturbances grew temporally, leading to an
unbounded linear response and presumably transition. The analytic prediction of the
absolute instability critical Reynolds number has subsequently been verified by Pier
(2003) and Davies & Carpenter (2003), and is not in dispute. The issue is its role in
transition to turbulence of the disk flow.

Lingwood (1996) performed an experimental study designed to capture the temporal
growth associated with the absolute instability. This involved introducing unsteady
disturbances into the boundary layer and following their development in space and
time. The unsteady disturbances were a short duration air pulse that emanated from
a hole in the disk surface. The pulse occurred once every disk rotation. The location
of the pulse was just outboard of the minimum critical radius for Type I crossflow
modes. Lingwood followed the evolution of the azimuthal velocity fluctuations with
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a hot-wire sensor placed at different radial and azimuthal distances from the air
pulse. Ensemble averages of the time series, correlated with the azimuthal position
of the air pulse, revealed wave packets. When the leading and trailing edges of
the wave packets were presented in terms of their Reynolds number (radius) and
time (azimuthal position with respect to the disk rotation speed) they revealed a
tendency for an accelerated advancing of the trailing edge. Unfortunately, Lingwood’s
measurements stopped short of the critical radius, with the observation that the well-
defined structure of the wave packet disintegrated when the critical Reynolds number
was approached. The assumption was that this was due to the absolute instability
which caused the onset to turbulence.

A different picture has emerged following numerical simulations by Davies &
Carpenter (2003). This involved solving the fully linearized Navier–Stokes equations
for conditions of the rotating disk flow. In their simulation, they introduced impulse-
like disturbances that led to the growth of wave packets. At lower Reynolds numbers,
the results were found to reproduce the behavior observed by Lingwood (1996). In
particular, there was close agreement to the space–time development of the leading
and trailing edges of the wave packets found in the experiment. However, in the
absolutely unstable region, the strong temporal growth and upstream propagation
was not sustained for long times, and the convective instabilities eventually dominated.
Thus they concluded that the absolute instability of the rotating disk boundary layer
does not produce a linear amplified global mode, but seemed to be more associated
with a transient temporal growth. As such, it could not explain or solely account for
the turbulence transition locations observed in experiments.

An answer to this was suggested by Pier (2003) who examined the secondary
instability of finite-amplitude waves of the rotating disk flow. The analysis revealed
that the primary saturated waves initiated at the critical radius of the absolute
instability are already absolutely unstable with respect to secondary perturbations.
In this scenario, the primary nonlinear waves are a prerequisite for the development
of the secondary instability that leads to transition to turbulence. The primary waves
in this case are travelling with respect to the disk frame and have an azimuthal
wavenumber (n) of 68 (ωcA

0 = 50).
To date, the only experiment we are aware of that was specifically designed to

document the absolute instability in the rotating disk flow has been that of Lingwood
(1996). Although care was taken in the execution of the experiment, some issues
remain. The first is the introduction of the temporal disturbances through a hole in
the disk surface. A similar approach was used by Wilkinson et al. (1989). Their flow
visualization revealed that the hole produced a stationary disturbance wedge that
swept outward on a logarithmic arc. Lingwood detected this in hot-wire surveys for
the higher disk r.p.m. condition at which most of the results were based, but surmised
that the hole produced a disturbance no greater than for unavoidable dust or other
surface imperfections. The implication of this is that the background disturbance
conditions could have possibly been lower to allow wave packets to be followed
closer to RcA

.
A second implication of introducing temporal disturbances through a hole in

the disk comes in obtaining an ensemble average of the generated wave packets.
The absolute instability applies to travelling modes. To capture these, the ensemble
average is conditioned on the time instant of the disturbance pulse. In Lingwood’s
(1996) experiment, the air pulse occurred when the hole in the disk was directly over
a fixed air source. As a result, the disk was always in the same rotation position at
the time instant of the disturbance. Therefore the effects of any stationary surface
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imperfections (holes, bumps, dust, etc.) producing stationary crossflow modes would
also contribute to the ensemble averages.

Finally, in light of the significance that the disturbance amplitudes might have
in producing a global instability, it is important to document the wave packet
characteristics with regard to linear theory. This should include wall normal amplitude
distributions and spatial growth rates.

In light of these issues and the recent simulations and analysis, the objective of our
work was to try to improve upon Lingwood’s (1996) experiment by:

(i) reducing the background disturbances with particular attention to surface
imperfections in order to limit the amplitude of stationary modes and thereby provide
the potential for following disturbance wave packets closer to RcA

;
(ii) introducing temporal disturbances off the disk surface above the boundary

layer, to eliminate the need for stationary disturbance producing holes in the disk
surface;

(iii) documenting the basic flow and forced disturbance characteristics to verify
linear development so that a direct comparison to Lingwood’s (1995) linear analysis
and Davies & Carpenter’s (2003) linear simulation could be made;

(iv) examining the effect of larger disturbance amplitudes on the development of
the wave packets close to RcA

.
The experiment would make use of the same rotating disk facility previously used

by Corke & Knasiak (1994, 1998) and Corke & Matlis (2004). This will allow a direct
comparison of the basic flow and natural crossflow mode development that had been
documented in those previous experiments.

2. Experimental set-up and procedure
2.1. Set-up

The rotating disk facility consists of a polished aluminium disk mounted on an air-
bearing with an integrated d.c.-motor. The d.c.-motor is controlled by a dedicated
digital controller which takes feedback from an optical encoder mounted on the
shaft of the motor. The whole system leads to minimum vibration of the disk and a
constant rotation speed to within 0.003 %. The measurement surface consisted of a
2.54 cm thick, 45.72 cm diameter aluminium disk. The disk was ground and diamond
lapped to be flat and parallel to 0.0038 mm. The surface of the disk was polished to
a 2 µm finish. A photograph of the rotating disk set-up is shown in figure 1(a).

A motorized traversing mechanism was mounted above the surface of the disk.
It allowed two directions of motion: radial and wall-normal, with an accuracy of
0.025 mm, and 0.00025 mm, respectively. The motion in both directions was controlled
by stepper motors. A Linear Variable Differential Transducer (LVDT) motion sensor
provided feedback for the wall-normal motion. The traversing mechanism was
controlled through software by a digital data acquisition and control (DAC) computer.

Special care was taken to position the hot-wire sensor accurately above the surface
of the disk. For this we used a cathetometer which was a magnifying telescope with
a graticule. This was mounted on a slider that was translated in the vertical direction
with a micrometer. The total resolution of the system was 0.002 mm. The absolute
distance of the sensor from the disk was determined by taking half the distance
between the sensor and its reflection off the surface.

To obtain velocity measurements, a constant-temperature hot-wire anemometer was
used. The hot-wire probe was mounted in the traversing mechanism and positioned
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Figure 1. (a) The rotating disk set-up and (b) schematic of air pulse generator used to
introduce temporal disturbances in the boundary layer.

under computer control. The sensor was oriented so that it would primarily sense the
azimuthal velocity component, Uθ .

The hot-wire sensor was calibrated in a separate calibration jet facility with a known
reference velocity. A fourth-order polynomial was used to fit the velocity-voltage data
pairs. This polynomial was then used to convert voltages to velocities measured in the
disk flow. The accuracy of the calibration was 0.09 % of the maximum disk surface
velocity.

The anemometer output was divided into a.c. and d.c. signals. The a.c. signal was
obtained by passing the analogue signal through a band-pass filter with the high-pass
frequency cutoff set to remove the d.c. (�0.1 Hz), and the low-pass frequency cutoff
set at half the sampling frequency to prevent frequency aliasing. The filtered a.c. signal
was amplified to use the full range of the analogue-to-digital (A/D) converter and
thereby minimize digital quantization error. The d.c. containing signal was separately
d.c.-shifted and amplified. Following this analogue conditioning, the a.c. and d.c.
signals were input to the A/D converter in the data acquisition computer.

2.2. Air-pulse disturbance generator

The disturbance generator consisted of a custom-designed micro air jet that was
suspended above the disk outside of the boundary layer. The air in the jet exited from
a hypodermic tube with a 0.203 mm inside diameter. The tube was part of an assembly
that allowed it to be held rigidly from a mount on the traversing system cross-member.
The air pulse generator is shown in the set-up in figure 1(a). A schematic drawing
of the assembly is shown in figure 1(b). The assembly was supplied with a pressure
regulated air source. Two air solenoid valves, one normally closed and the other



68 H. Othman and T. C. Corke

0.8

0.4

0 0.4 0.8

A
——
Amax

t/T

Figure 2. Ensemble average of the velocity pulse produced by the air pulse generator that
was measured 1 cm from air pulse jet exit.

Input conditions

Disk r.p.m. 1000

ω 104.7 s−1

rcI
11.1 cm

RecI
= rcI

(ω

ν

)1/2

285 (theory)

RecA
507.3 (Lingwood 1997)

rcA
19.75 cm

rpulse 12.1 cm
Repulse 311

Table 1. Experimental conditions.

normally open, were used to generate a short duration air pulse. A single solenoid
valve (normally closed) did not close sufficiently fast to achieve the desired duration
of the pulse. The use of the second (normally open) valve provided a positive control
to end the air pulse. The valves were operated from voltage time series provided by
the data acquisition computer. Figure 2 shows the average velocity time series for
a large ensemble of air pulses measured by a hot-wire sensor placed approximately
1 cm from the tube exit. The time axis is normalized by the time for one rotation of
the disk, T , for the conditions of the experiment. The maximum time extent of the
pulse is approximately 20 % of the disk rotation. This was found to be sufficiently
short to produce isolated wave packets and follow their evolution.

The air pulser assembly could be moved in the wall-normal direction which allowed
a degree of adjustment to control the spatial extent and strength of the air pulse. The
strength was also controllable through the air-supply pressure. For all measurements,
the distance of the air pulse jet from the disk surface was 4mm. Based on mean
velocity profiles, the boundary-layer thickness was approximately 2 mm.

The air pulse assembly could also be located at different radial and azimuthal
locations, so we could achieve the relative separations between the hot-wire and
pulse generator required to map out the space–time evolution of the generated wave
packets. For the results reported here, the radial position of the pulse generator was
kept fixed at r = 12.1 cm, which corresponded to R = 311 used by Lingwood (1996).

2.3. Experimental conditions

The disk was operated at the conditions used by Corke & Knasiak (1994, 1998)
and Corke & Matlis (2004). The experimental conditions are summarized in table 1.
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r (cm) r/rcI
r/rcA

Re r (cm) r/rcI
r/rcA

Re

7.00 0.6306 0.3548 180 18.00 1.6216 0.9107 462†

8.00 0.7207 0.4041 205 18.50 1.6667 0.9363 475
9.00 0.8108 0.4553 231 19.00 1.7117 0.9620 488†

10.00 0.9009 0.5066 257 19.50 1.7568 0.9876 501
11.00 0.9910 0.5559 282 19.75 1.7793 0.9994 507
12.00 1.0811 0.6071 308† 20.00 1.8018 1.0112 513†

13.00 1.1712 0.6584 334† 20.25 1.8243 1.0250 520
14.00 1.2613 0.7077 359† 20.50 1.8468 1.0369 526
15.00 1.3514 0.7589 385† 21.00 1.8919 1.0625 539†

16.00 1.4414 0.8101 411† 21.50 1.9369 1.0881 552
17.00 1.5315 0.8614 437† 22.00 1.9820 1.1137 565†

22.50 2.0270 1.1392 578†

† Measurement locations with disturbance pulse.

Table 2. Measurement radial locations.

Based on these, the locations of the critical radii for the Type I crossflow mode linear
growth, rcI

and absolute instability, rcA
, were defined.

The velocity was measured at 22 radial positions that bracketed the two critical
radii. These are summarized in table 2. Wall normal points were progressively spaced
in the wall-normal direction, approximately according to the mean velocity gradient.
Closest to the disk surface, the points are 0.0381 mm apart; furthest from the disk
surface, the points are 0.286 mm apart. The total traverse encompassed 3.962 mm.
This was the same for all the radial locations.

Our observations as well as those in the literature (Wilkinson & Malik 1985;
Corke & Knasiak 1998; Saric, Reed & White 2003) emphasize the extreme sensitivity
of Type 1 crossflow modes to surface imperfections such as µm-sized dust particles.
Therefore special care was taken to keep the disk surface clean by wiping the
surface before each data set. With this approach, we (Othman 2005) verified excellent
repeatability of Rtr over the course of the experiment.

2.4. Experimental approach and time-series analysis

Two types of measurement were performed: those that documented the basic flow
and its linear stability characteristics, and those that documented the evolution of
wave packets produced by the air pulse disturbances. Documentation of the basic flow
involved measurement of wall normal profiles of velocity time series at different radial
locations (table 2). These consisted of statistically independent records of contiguous
voltage series proportional to the azimuthal velocity (Uθ ) taken at 24 discrete points
in the wall-normal (z) direction. The contiguous records were 1024 points in length
which corresponded to 6.82 revolutions of the disk at the sampling frequency of 2500
samples s−1. Given the disk rotation frequency and sampling frequency, there were
150 sample points per disk revolution. In spectral analysis of the time series, this
allowed us to resolve stationary (moving with the disk rotation velocity) modes with
azimuthal mode numbers (n) of up to 75. The absolute instability corresponds to
travelling modes. The dimensionless frequency of these is in the range of ωcA

0 from
50 to 60 (Pier 2003), giving real frequencies from 833 to 1000 Hz. These were fully
resolved by the sampling frequency used.
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Figure 3. Schematic defining the relative positions of the air pulse generator and hot-wire
sensor used in documenting the space–time development of disturbance wave packets. Radius
Reynolds number of the pulse generator was fixed at Re= 311 which was the same as Lingwood
(1996).

Angle (deg.) Angle (deg.)

1 10 8 190
2 20 9 220
3 40 10 250
4 70 11 280
5 100 12 310
6 130 13 340
7 160 14 350

Table 3. Relative angles between the hot wire and the air pulser.

The same sampling rate was used in documenting the evolution of wave packets
produced by the air pulse generator. However, the velocity time series acquisition was
coordinated with the pulse initiation. The approach was to start the acquisition of the
hot-wire sensor voltage a short time before triggering the air pulse. The voltage signal
used to initiate the air pulse was also simultaneously sampled with the hot-wire time
series so that it could be used as a time reference for ensemble averaging. Typically,
1000 records were used to form the ensemble average. There was no correlation
between the time-series acquisition and the disk rotational position. Therefore, the
ensemble average yielded only features that were related to the disturbance pulse, and
travelling with respect to the disk rotation frame of reference.

The relative positions of the air pulse generator and hot-wire sensor varied. A
schematic representation is shown in figure 3. In all cases, the radial location of the
pulse generator was fixed at 12.1 cm (R = 311). However, its azimuthal position was
varied to produce different azimuthal spacings, θ , between the pulse generator and
the hot wire. Table 3 gives the relative angles used in the experiment. At each of
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Figure 4. Mean profiles of azimuthal velocity component at different radial Reynolds
numbers. Solid curve, theoretical profile for an infinite radius disk.

these, velocity time series were recorded at all of the radial positions indicated by the
footnote in table 2.

In all cases, the hot-wire voltages were converted to velocities using a fourth-order
polynomial calibration equation. The polynomial coefficients were determined during
calibration runs by a least-squares fit against known velocity points. Spectral analysis
was performed using discrete fast Fourier transforms (FFT). The typical FFT size
was 128 points. This gave a frequency resolution of 19.5 Hz, or for stationary modes
�n � 1. Amplitudes corresponding to spectral peaks were converted to r.m.s. by
taking the areas under the peaks and normalizing them by the frequency bandwidth.
These were used to determine the spatial amplitude distributions for particular modes.

3. Results
3.1. Basic flow and natural instability development

Although our principle objective was to study the absolute instability of the
rotating disk boundary layer, it was important to verify that the basic flow and
its linear stability characteristics agreed with theory. The basic flow is represented
in the mean velocity profiles shown in figure 4. For these, the wall coordinate and
azimuthal velocity are presented in similarity form, z

√
ω/ν, and uθ/(rω), respectively.
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Figure 5. Spectra of azimuthal velocity fluctuations at different radial positions (Reynolds
numbers) of the basic flow on the disk.

The different symbols represent Reynolds numbers (radii) where the profiles were
measured. The solid curve is the theoretical (laminar) mean velocity profile for an
infinite radius rotating disk. At the lower radii, the measured velocity profiles show
excellent agreement with the theoretical profile. The deviation of the mean velocity
profiles from the laminar distribution at larger radii is an indication of the mean flow
distortion caused by the growth of crossflow modes to nonlinear amplitudes. For the
conditions on the disk this occurred at R � 539. Note that this agrees well with the
transition Reynolds number found on a ‘clean’ disk by Wilkinson & Malik (1985),
and is well beyond the absolute instability critical Reynolds number (507.3).

The linear stability of the basic flow is first documented through the spectra of
azimuthal velocity fluctuations at different radial locations on the disk (figure 5).
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These were taken at the height above the surface where the fluctuation amplitude
is a maximum (z

√
ω/ν � 1.5). The velocity fluctuations are presumed to represent

combinations of stationary and travelling Types 1 and 2 crossflow modes. Although
the Type 2 mode has a lower critical Reynolds number of 69 (Faller 1991), its
amplification rate is considerably smaller than the Type 1 mode. In addition,
the Type 2 instabilities seem to appear in proportion to the amount and
amplitude of external disturbances (Faller 1991). Therefore, experiments with carefully
controlled disturbance conditions, are expected to be largely dominated by Type 1
modes.

We have made no attempt to decompose the velocity fluctuations into the
contributions due to stationary and travelling Type 1 modes (such as Corke &
Knasiak 1998). Therefore, the abscissa of the spectral plots is shown as frequency,
and not normalized by the disk frequency to represent the stationary azimuthal mode
number, n. Linear theory and confirming measurements by Corke & Matlis (2004)
indicate that the most amplified travelling modes move at approximately 85 % of the
local disk surface velocity.

At any supercritical radii (r/rcI
> 1), we expect to see a range of frequencies (mode

numbers) that represent the progression of growing and decaying crossflow waves.
For stationary modes, n= βR (see Malik, Wilkinson & Orszag 1981), where β is the
azimuthal wavenumber. The most amplified β is 0.0698 so that n ∝ R, or the most
amplified frequency varies linearly with radius. This result leads to the commonly
observed spiral angle of stationary crossflow modes of ψ = 11.1◦ (Corke & Knasiak
1998).

The velocity spectra shown in figure 5 correspond to progressively increasing
Reynolds numbers (radii) from 462 to 564. Starting at the lowest Reynolds number
in the figure, there appears a relatively narrow band of frequencies in which the
amplitude is smoothly above the lower background level. This band is observed to
grow in amplitude and progressively shift towards higher frequencies as the radius
(Reynolds number) increases. The arrows above each curve indicate the frequency
based on n= βR. Throughout the Reynolds range up to 514, the arrows correspond
reasonably well with the largest amplitudes in the spectra.

This trend in the growth and shift of the dominant frequencies continues at
least until R = 526 in figure 5. We note that this is beyond RcA

. At further radii
corresponding to R = 564, the spectrum is broadband, signifying a transition to
turbulent flow. This also corresponds with a large mean flow distortion that was
exhibited in the mean velocity profile at this location in figure 4.

The amplitude distribution in the wall-normal direction for the most amplified
frequency corresponding to the arrow above the spectra at R = 462 is shown in figure 6.
Also included are the distributions at Reynolds numbers that bracket RcA

. The curve
corresponds to the linear theory eigenfunction based on β = 0.0698 and the most
amplified αr = 0.354. The measured amplitude distributions agree fairly well with the
linear eigenfunction indicating that velocity fluctuations are associated with the linear
Type 1 crossflow mode.

Another check of the stability of the basic flow comes in examining the spatial
amplification rates. This is presented in figure 7 for four selected frequencies. The
lowest frequency corresponds to that for the wall-normal distributions in figure 6. The
others are progressively higher, with 566 Hz being the approximate most amplified
just upstream of RcA

. The r.m.s. amplitudes of these, u′(θ), have been normalized by
RcI

to express the amplification rate. These are shown on a log scale to emphasize
exponential growth.
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Figure 6. Wall-normal amplitude distribution at different radial location Reynolds numbers
of the basic flow for the frequency (f = 466 Hz) corresponding to the arrow above spectra
at Re= 462 in figure 5. Curve corresponds to linear-theory eigenfunction for β = 0.0698 and
αr = 0.354.

For all the frequencies shown in figure 7, there is a clear linear (exponential) growth
region. The respective straight lines resulted from a least-squares curve fit of the data
to an exponential function. The slopes of these lines are the respective amplification
rates. These have been summarized in table 4. The amplification rates are very close
to those found by Corke & Knasiak (1998) using wall ‘dots’ to enhance specific
azimuthal mode numbers, and a method to separate the velocity fluctuations into
those associated with stationary or travelling modes. For n= 27 and f = 450 Hz they
obtained −αi/RecI

= 0.034 and 0.041, respectively. For a travelling mode at 483 Hz,
they found −αi/RecI

= 0.049. Mack (1985) obtained a value of −αi/RecI
= 0.039 at

a Reynolds number of 400 for an envelope of growing waves that had been excited
by a single isolated roughness element, and a largest growth value of 0.043 for pure
waves. Spalart (1991) also found a value of 0.045 for random stationary disturbances
at R =440.

The content of the time series used in obtaining the spectra for isolating the growth
rates at specific frequencies contain contributions from both stationary and travelling
modes. In theory, their growth rates are different, with the travelling modes being
slightly more amplified. Therefore within this uncertainty, the amplification rates
measured here are in reasonable agreement with theoretical predictions.

The results in figure 7 are not intended, or capable, of determining the critical
Reynolds numbers for the respective frequencies because the digitally acquired hot-
wire sensor cannot measure asymptotically small fluctuations. The lower measurement
limit of fluctuation amplitudes in our case is specified by the r.m.s. quantization
noise. Accounting for this, and putting it in terms of a minimum r.m.s. velocity
fluctuation based on dE/dU from the hot-wire calibration for U at u′

max in the disk
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band for the basic flow. Lines correspond to a least-square curve fit of the data to an
exponential function. The slopes of the lines corresponding to the amplification rates are given
in Table 4.

f (Hz) −αi/RecI

466 0.034
500 0.044
513 0.053
566 0.055

Table 4. Amplification rates based on figure 7.

boundary layer, the quantization noise corresponds approximately to 0.0057 m s−1,
or u′/Umax = 0.00049 based on Umax at rcI

. The arrow shown in figure 7 signifies
this noise base. As indicated in our objectives, we took great care to minimize
disturbances. As a result, the growing modes start at low initial amplitudes that
cannot be detected until they exceed our noise base limit. The actual approach to
determine Rc is to introduce larger-amplitude disturbances with known wavenumber
content at subcritical Reynolds numbers and then measure the spatial amplitude
development to determine the location of neutral growth. This was not our
intention.

The location of the amplitude saturation and decay is another indication of where
transition to turbulence is occurring. In figure 7, this occurs at approximately R � 540,
which also corresponds to where the mean flow profiles began to deviate from the
theoretical laminar profile. Thus, both measurements indicate natural transition to
turbulence to be occurring past RcA

.
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Figure 8. Spectra of azimuthal velocity fluctuations in boundary layer produced by air pulse
at two amplitude conditions used in experiments. (a) 80 p.s.i.g. (b) 28 p.s.i.g. Measurements
were made at R = 347 and θ =20◦.

3.2. Temporal mode development

Short-duration air-pulse disturbances were introduced at a fixed radius in order
to follow the development of wave packets and discern their amplitude growth
in space and time. The radial location of the disturbance source corresponded to
R =311 (r/rcI

= 1.0900), which was the same as that of Lingwood (1996). After
some initial experiments, two pressure amplitudes were selected. These are denoted
by the laboratory pressure settings, 28 and 80 p.s.i.g. The lower pressure amplitude
was verified to give linear development to beyond the absolute instability radius. As
expressed in the objectives, this was important in order to compare directly to the
linear analysis of Lingwood (1995) and the linear simulation of Davies & Carpenter
(2003). The use of the higher pressure was intended to examine the effect of larger
disturbance amplitudes on the development of the wave packets close to RcA

, with
the possibility of producing the nonlinear scenario shown by Pier (2003) to produce
a global instability.

Spectra of azimuthal velocity fluctuations in the boundary layer produced by the
air pulse at the two amplitude conditions are shown in figure 8. These were measured
at a close radius and angle to the pulser, corresponding to R = 347 and θ = 20◦. The
sensor height from the wall corresponds to the location of u′(θ)max .

At this close distance to the air pulse, the disturbance feeds a broad range
of frequencies that will eventually be selectively amplified by the flow. The
spectra reveal that both pulse amplitude conditions put energy into a range of
frequencies that are capable of being amplified by the Type I crossflow modes
(f � 300 Hz), and being a part of the absolute instability (f � 833 Hz). The
higher pulse amplitude produces higher fluctuation levels, with about the same
frequency distribution as the lower amplitude pulse. This is discussed in the next
section.
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3.2.1. Low-amplitude pulse
The intention of the lower amplitude air pulse was to produce disturbance

wave packets with linear characteristics. One check on the linear character of the
disturbances can come by comparing their wall-normal amplitude distributions to the
the linear theory eigenfunction. This is done in figures 9 and 10.

Figure 9 shows ensemble-averaged azimuthal velocity, u(θ), time series measured
at different heights above the wall at R = 437 and θ = 220◦. The ensemble averaging
reveals clear wave packets. The velocity time series are shown as a dashed curve.
These have a periodic appearance with an amplitude that varies to define the leading
and trailing edges of the packet. The amplitude envelope of the velocity fluctuations
is shown as a solid curve. This was determined using a digital Hilbert transform of
the digitally band-passed ensemble time series for 450 � f � 1250 Hz. Note that
these frequencies encompass the most amplified linear modes as well as the absolutely
unstable modes. Details of this are contained in Othman (2005).

The maximum envelope amplitude of the wave packets at the different heights
in figure 9 are compared to the linear theory eigenfunction in figure 10. The
eigenfunction, shown as the solid curve, is the one used in figure 6 and corresponds
to R = 462. Also shown in figure 10 is the amplitude distribution for another set of
wave packets measured at R =513 and θ =280◦. This location is just past RcA

.
Both of the wave packet amplitude distributions agree well with the linear

eigenfunction. This supports that premise that the velocity fluctuations in the
wave packets are primarily associated with Type I crossflow modes, and that their
amplitudes satisfy linear theory assumptions.

Another indication of the linear character of the disturbance wave packets comes
from examining their spatial amplitude growth. With temporal disturbances emanating
at a point, this is not as straightforward as for the natural developing modes. For
example, figure 11 shows velocity spectra at different azimuthal locations for one
radial position (R = 437). These spectra correspond to the z height of the amplitude
maximum. They demonstrated the evolution of the band of frequencies of velocity
fluctuations in the disturbance wave packet as it evolves from the source.

In order to show the full evolution of the disturbances in space, spectra like those
in figure 11 but at all of the measured radii, were compiled to produce figure 12.
Figure 12(a) shows the amplitudes in (r, θ)-space at a frequency of 533 and fig-
ure 12(b) at 1000 Hz, where the former is near the most amplified (see figure 7)
and the latter is in the band of predicted absolute instability (f � 833 Hz). The
amplitudes have been normalized by their minimum value and presented as log-level
contours to highlight exponential growth. The solid curve corresponds to a log-spiral
with a spiral angle of ψ = 11.1◦ that is based on β = 0.0698 and the most amplified
αr = 0.354. Our expectation is that the disturbances from the pressure pulse source
will travel outward along the log-spiral trajectory. Based on the amplitude contours,
this expectation appears reasonable.

In order to determine whether the two discrete frequencies in the disturbance wave
packet are growing linearly, amplitudes along the log-spiral in figures 12(a) and 12(b)
were compiled and plotted in figure 13. This shows the actual u′(θ) values normalized
by RcI

as in figure 7. The solid line corresponds to an exponential fit to the values,
and the exponent of the fit corresponding to −αi/RcI

is given in the figure. Also
shown by the dashed line is the location of RcA

.
There are two points to be made from figure 13. The first is that both of the

frequencies exhibit linear growth at least up to RcA
. This was an important issue in

our objectives in order to satisfy linear theory initial conditions used in the absolute
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Figure 9. Ensemble-averaged azimuthal velocity time series measured at different heights
above disk surface for lower (28 p.s.i.) amplitude pulse. r = 17.0 cm; θ = 220◦. Measurements
are at Re= 437. Dashed curve, ensemble-averaged velocity; solid curve, amplitude envelope
produced by a digital Hilbert filter of our design.
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Re= 437 and 513 for lower (28 p.s.i.) amplitude pulse. The curve is the linear theory
eigenfunction at Re= 462 shown in figure 6. �, Re= 437, θ = 220◦; �, Re= 513, θ = 280◦.

instability analysis. Note, that we expect the amplification rates measured along the
log spiral to be lower than those in figure 7, which were measured in the radial
direction. The second point from this figure is that even at the lower disturbance
amplitudes produced by the lower pressure (28 psi) pulse, there is growth in energy
over the whole frequency range of importance.

The evolution of wave packets was documented by ensemble-averaged velocity
measurements at different radial and azimuthal distances (table 2) from the air-pulse
disturbance generator. A sample of these is shown in figure 14. These are at R = 514,
which is just supercritical for absolute instability growth based on Lingwood (1996).
The different plots correspond to increasing azimuthal angles from the disturbance
generator. The time taken for the wave packets to reach the velocity sensor increases
with the azimuthal spacing. Here, time has been normalized by the disk rotation time
T . For time increasing from left to right, the leading edges of the wave packets are
on the left-hand side, and the trailing edges are on the right. Note that at this radius
for the sensor angle locations, the wave packet has traveled from one to two times
around the disk.

Of particular interest with the absolute instability mechanism is the spreading of
the wave packets in time. This has been measured by analysing the evolution of
wave packets at all of the locations given in table 2 in which leading and trailing
edges were identifiable. Where these were identifiable, the process for determining
the edges of the wave packet was to use the amplitude envelope calculated from the
Hilbert transform, locate the peak in the envelope amplitude, then move forward
and backwards in time to find the point where the amplitude envelope reached the
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Figure 11. Spectra of maximum azimuthal velocity fluctuations at Re= 437 for different
relative angles from the low amplitude (28 p.s.i.) pulse generator. r/rc = 1.53.

background level. The background level was computed for each ensemble average in
the range 3 � t/T � 4.

The result of determining the wave packet leading and trailing edges for the lower
amplitude (28 p.s.i.g.) air pulse is presented in figure 15. The squares mark all of the
leading edges of the wave packets at every position. The triangles mark all of the
trailing edges. The distances between the leading and trailing edge pairs represent
individual wave packets. Singly they might appear as ‘fingers’ that are elongated in
the R-direction and slightly inclined in the time-direction. A good example of this
is shown in figure 15(a) of Lingwood (1996). As the wave packets develop radially,
they merge together. Therefore, what is ultimately important is the upper bound in
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Figure 13. Spatial development of r.m.s. azimuthal velocity fluctuations measured along
log-spiral in figure 12 for �, 533 Hz (−αiRec = 0.0223) and �, 1000 Hz (−αi/Rec = 0.0150)
with low pressure (28 p.s.i.) pulse generator. Lines correspond to a least-squares curve fit of
the data to an exponential function.

time of the trailing edges and the lower bound in time of the leading edges. For
reference, the solid curves mark the bounds drawn by Lingwood (1996). The dotted
curve corresponds to the space–time development of the trailing edge of a n= 67
disturbance for the linear simulation of Davies & Carpenter (2003). The vertical
dashed line marks RcA

.
With regard to our objectives, in making comparisons to Lingwood’s (1996)

experiment, the important comparison is with the development of the disturbance
packet trailing edge, near RcA

. We might expect some differences to occur close to
the disturbance source because of the differences in approach and the need for some
development length for disturbances to be amplified by the flow. However, in the
range of Reynolds numbers between 400 to 475, the agreement is very good.

Above R = 475, Lingwood (1996) predicted an acceleration of the temporal
spreading of the wave-packet trailing edge. This was largely extrapolated since the
largest measurement Reynolds number was approximately 480.

In our case, we observe a deceleration of the trailing-edge temporal spreading to
which it is asymptotically approaching a constant. The same behavior was predicted by
Davies & Carpenter (2003). Their conclusion was that although the higher frequencies
were absolutely unstable, this did not produce a global mode and they were still
dominated by the convective instability.

The spatio-temporal development of the disturbance wave packets is further
illustrated in figure 16 which shows contours of the peak amplitude of the wave
packets. As in figure 12, the amplitudes have been normalized by the minimum value
and displayed as log-scale contours to highlight linear growth. The heavier solid
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Figure 14. Ensemble-averaged azimuthal velocity time series measured at different azimuthal
angles at Re= 514 for lower (28 p.s.i.) amplitude pulse. Dashed curve, ensemble-averaged
velocity; solid curve, amplitude envelope produced by a digital Hilbert filter of our design.

lines represent propagation boundaries with spreading rates taken from the linear
simulation of Davies & Carpenter (2003). These lines are found to encompass the
disturbance amplitude evolution well. The development of the peak amplitude of the
wave packets appears to be largely convective, with no abrupt changes in the vicinity
of RcA

. The maximum amplitude occurs at R � 530 which is comparable to the
natural development shown in figure 7.
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Figure 15. Space–time map of �, leading- and �, trailing-edge locations of disturbance wave
packets for lower (28 p.s.i.) amplitude pulse. Solid curves are the trend from Lingwood (1996).
The dashed line is from the linear simulation of Davies & Carpenter (2003).

3.2.2. High-amplitude pulse

The higher pressure (80 p.s.i.g) air pulse was intended to examine the effect of
larger disturbance amplitudes on the development of the wave packets close to RcA

.
As with the lower amplitude pulse case, we examined the full spatial evolution of the
disturbance in this case by compiling spectra at different (r, θ) locations. The result
of this is presented in figures 17(a) and 17(b). These plots are comparable to those
in figure 12 and focus on the same frequencies of 533 and 1000 Hz. The amplitudes
have again been normalized by their minimum value and are presented as log-level
contours to highlight exponential growth. The solid curve again corresponds to a
log-spiral with a spiral angle of ψ =11.1◦ that is based on β = 0.0698 and the most
amplified αr = 0.354.

As before, amplitudes along the log-spiral were compiled and plotted. These are
shown in figure 18. The symbols correspond to the u′(θ) values normalized by RcI

.
The solid lines correspond to the exponential fit for the respective frequencies at the
lower pressure condition that was shown in figure 13.

For linear disturbances at higher initial amplitudes, we expect a shift in the
amplitude, with the growth rate remaining the same. In this case, neither of the freq-
uencies have such well-defined linear regions as the lower disturbance case (figure 13).
For f = 533 Hz, if we include only the first five points, a good linear fit is obtained,
but the amplification rate is larger than before. If we include all the points up to RcA

,
a linear fit yields approximately the same amplification rate as before, but the fit is
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Figure 16. Space–time map of maximum wave packet envelope amplitude for lower (28 p.s.i.)
amplitude pulse. Contours are log(u′(θ )/u′(θ )min). Solid lines are based on linear simulations
of Davies & Carpenter (2003). The dashed line marks absolute instability critical Reynolds
number. Note edge of disk is at Re= 586.95.

not nearly as good. For f = 1000 Hz, a linear fit of the first three or the last four
points yields the same growth rate. Therefore, a fit that includes all the points gives
approximately the same value as the lower disturbance case, although again the fit is
not as good.

Overall we can conclude that the higher pulse amplitude increased the amplitude
of the most amplified frequencies. There is also a possibility that its development was
weakly nonlinear. The amplitude and growth rate of higher frequencies expected to
be absolutely unstable did not appear to change with the higher disturbance pulse.

We next examined the effect of the higher-pressure pulse on the development of the
wave packets. Ensemble-averaged time series that illustrate this at R = 514 are shown
in figure 19. Note that this is the same Reynolds number as the ensemble-averaged
time series shown in figure 14. Comparing the two cases, the higher-pressure pulse has
produced a noticeable increase in the spreading of the trailing edge (right-hand side)
of the wave packets. The leading edges (left-hand side) show virtually no change.

The locations of the leading and trailing edges of the wave packets in this case
were analysed as before. The space–time development of the wave packet spreading
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bance source.
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Figure 18. Spatial development of r.m.s. azimuthal velocity fluctuations measured along
log-spiral in figure 17 for �, 533Hz (−αiRec =0.0223) and �, 1000 Hz (−αiRec = 0.0150)
with high-pressure (80 p.s.i.) pulse generator. Lines correspond to exponential fit from
figure 13 for low-pressure pulse.

is summarized in figure 20. The corresponding result at the lower pulse pressure was
shown in figure 15. As before, the squares mark all of the leading edges of the wave
packets at every position, and the triangles mark all of the trailing edges. The distance
between the leading- and trailing-edge pairs represent individual wave packets. Again
for reference, the solid curves mark the bounds drawn by Lingwood (1996), and the
vertical dashed line marks RcA

.
Again, the important comparison we are making is with the development of the

wave packet trailing edges near RcA
. Closer to the disturbance source, the larger pulse

levels have produced an overall initially faster expansion of the wave packets, both
on the leading and trailing edges. These, however, developed relatively parallel to the
solid curves representing Lingwood’s (1996) trend.

Focusing on the trailing-edge development close to RcA
, we do not observe the same

type of deceleration of the temporal spreading observed with the lower-amplitude
pulse. In the previous case, the trailing edge reached an asymptote at t/T � 2.3. In
the present case, by the last measurement position inboard of RcA

, the trailing-edge
location is approximately t/T =2.8. More importantly, it has a trend that more
closely follows Lingwood’s (1996) expectation.

Beyond RcA
, the leading and trailing edges of isolated wave packets became more

difficult to specify in the ensemble averages at the large relative azimuthal angles.
This resulted in a lack of points at larger t/T for R > RcA

. Even with this difficulty,
a significant number of t/T values of trailing edges that were larger than the largest
for the lower pulse amplitude can be identified.
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Figure 19. Ensemble-averaged azimuthal velocity time series measured at different azimuthal
angles at Re= 514 for higher (80 p.s.i.) amplitude pulse. r =20 cm. Dashed curve, ensemble-
averaged velocity; solid curve, amplitude envelope produced by a digital Hilbert filter of our
design.

The higher-pressure pulse was found to significantly change the character of the
peak amplitude of the wave packets beyond RcA

. This is shown in figure 21, which
directly compares to figure 16 for the lower pulse amplitude. Here again, the the
amplitudes have been normalized by the minimum value and displayed on a log-
scale contours to highlight linear growth. The heavier solid lines again represent
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Figure 20. Space–time map of �, leading- and �, trailing-edge locations of disturbance wave
packets for higher (80 p.s.i.) amplitude pulse. Solid curves are trend from Lingwood (1996).
Dashed line is from linear simulation of Davies & Carpenter (2003).

propagation boundaries with spreading rates taken from the linear simulation of
Davies & Carpenter (2003). The vertical dashed line denotes RcA

.
Aside from some additional initial temporal spreading of the wave packet amplitude,

the development for R < RcA
is comparable to that with the lower pulse amplitude.

However, just beyond the critical Reynolds number, there was a rapid temporal
growth in amplitude of the wave packet that was not observed at the lower pulse
amplitude.

4. Discussion of results
The principal objective of this work was to reconcile inconsistencies in the temporal

growth of disturbance wave packets near RcA
between Lingwood’s (1996) experiment,

and the linear simulations of Davies & Carpenter (2003), as well as to understand
the role the absolute instability has on transition to turbulence of boundary layers
on a rotating disk. To accomplish this, we paid particular attention to minimizing
background disturbances, especially those resulting from surface imperfections to
which the crossflow instability is exceedingly sensitive. In this regard, we developed a
method for introducing controlled temporal disturbances from outside the boundary
layer. This had the advantage of not placing a hole through the disk surface such
as was done by Lingwood (1996), and that was known (Wilkinson et al. 1989) to
produce a stationary disturbance wedge around the disk. The motivation for these
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Figure 21. Space–time map of maximum wave packet envelope amplitude for higher (80 p.s.i.)
amplitude pulse. Contours are log(u′(θ )/u′(θ )min). Solid lines are based on linear simulations of
Davies & Carpenter (2003). Dashed line marks absolute instability critical Reynolds number.
Note edge of disk is at Re= 586.95.

steps was twofold: (i) to limit the amplitude of stationary modes and thereby provide
the potential for following travelling disturbance wave packets closer to RcA

, and
(ii) to lower background disturbance levels so that controlled disturbances above the
background level, could be minimized to assure that they be linear in accordance
with the assumptions of Lingwood’s (1995) analysis and Davies & Carpenter’s (2003)
simulation.

A secondary objective of this work was to examine the effect of larger disturbance
amplitudes on the development of the wave packets close to RcA

. This led to a second
experimental condition.

The quality of the experimental set-up was indicated by documenting the basic flow
and its linear stability characteristics. The mean flow was found to agree well with
the analytic profile for an infinite radius disk. The only deviation came at the largest
radii. We associated this with mean flow distortion brought on by the transition
to turbulence. The location of the mean flow distortion coincided with that of the
amplitude saturation at the end of the linear growth region of the band of most
amplified frequencies. Based on both of these characteristics, we judged transition to
turbulence to occur at R � 539. This agreed well with previous measurements in the
same facility by Knasiak (1996), and measurements in a different rotating disk facility
by Wilkinson & Malik (1985). Both of these had been with low disturbance ‘clean’
disks, and with measurements based on hot-wire sensors. The present measurements
placed RT R about 6 % larger than RcA

. This provided the first indication that the



Absolute instability of a rotating-disk boundary layer 91

absolute instability was not the dominating mechanism for transition to turbulence
at the low disturbance levels present in our experiment.

A more sensitive quantification of the basic flow came by documenting its stability
characteristics. Spectral analysis of u(θ) velocity fluctuations revealed growth in a
frequency band that agreed with the most amplified Type I crossflow modes predicted
from linear theory. The wall-normal amplitude distributions were found to agree well
with the linear theory eigenfunction. In addition, the radial development of maximum
amplitude of the most amplified frequencies exhibited clear linear (exponential) growth
regions. The amplification rates were very close to those found by Corke & Knasiak
(1998) who used wall ‘dots’ to enhance specific azimuthal mode numbers. In addition,
an average value of the amplification rates of the most amplified frequencies was
within 8 % of that predicted for a pure wave by Mack (1985), and within 2 % of
the value predicted from DNS simulations by Spalart (1991) for random stationary
disturbances.

When introducing the controlled temporal disturbances, we selected two initial
amplitudes (designated by the source pressure settings used). The velocity spectra
revealed that both pulse amplitude conditions put energy into a range of frequencies
that was capable of being amplified by the Type I crossflow modes (f � 300 Hz),
and to be a part of the absolute instability (f � 833 Hz). The higher pulse amplitude
produced higher initial fluctuation levels, with about the same frequency distribution
as the lower-amplitude pulse.

Two frequencies, one representing the most amplified linear range (533 Hz) and the
other representing the absolute instability range (1000 Hz) were analysed in detail
to verify their amplitudes and growth rates for the two temporal disturbances cases.
This was done by measuring their amplitudes from spectra of the wave packets. The
growth in amplitude was determined by following a log-spiral (r, θ) trajectory with a
11.1◦ spiral angle that corresponded to the most amplified wavenumbers.

For the low-pressure pulse, both frequencies exhibited clear linear growth starting
from the disturbance origin out to RcA

. This was an important result that substantiated
our objective that the lower-amplitude temporal disturbances be linear.

The higher-pressure pulse was found to increase the amplitude of the most amplified
(533 Hz) frequencies. In addition, based on a comparison with the lower pressure pulse
case, there was a possibility that the development of the most amplified frequency
was weakly nonlinear. In contrast, the amplitude and growth rate of the higher
frequencies in the absolutely unstable band with the higher pressure pulse, appeared
to be unchanged compared with the lower-pressure pulse.

The controlled temporal disturbances at the two pressures were each found to lead
to identifiable wave packets. The edges of the wave packets were determined from an
amplitude envelope that was found using a digital Hilbert filter of our design. The
method involved locating the peak in the envelope amplitude, then moving forward
and backwards in time to find the point where the amplitude envelope reached the
background level. The background level was computed in a large time region that
was out of the range of the wave packets.

The spreading of the disturbance wave packet leading and trailing edges was used
by Lingwood (1996) as evidence of the absolute instability. In making comparisons
to Lingwood’s experiment, the important comparison is with the development of the
disturbance packet trailing edge, near RcA

= 507.
For the lower-amplitude (lower-pressure) disturbances, we initially observed some

differences from Lingwood in the temporal extent of the wave packet trailing edge
at small radii, close to the source. This may have been due to the different approach
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used in producing the disturbances. However, after a short development distance,
fairly good agreement was found in the range of Reynolds numbers from 400 to 475.

In the experiment, Lingwood (1996) had extrapolated an acceleration of the
temporal spreading of the wave packet trailing edge based on results up to the largest
measurement Reynolds number of 480. In our case, we observed a deceleration of
the trailing-edge temporal spreading which is asymptotically approaching a constant.
The same behaviour was observed by Davies & Carpenter (2003) in their linear
simulations. Their conclusion was that although the higher frequencies were absolutely
unstable, this did not produce a global mode, and they were still dominated by the
convective instability.

This was further reinforced by following the space–time development of the peak
amplitude of the wave packets for the lower initial disturbance condition. These
showed a linear spreading of the wave packet amplitude in time and space from
the disturbance source. There were no abrupt changes in the wave packet amplitude
near RcA

. The maximum amplitude occurred at approximately R = 530, close to the
transition Reynolds number we had observed for the low disturbance basic flow (539).

With the higher-amplitude (higher-pressure) disturbances, there was no effect on
the space–time development of the wave packet leading edges. However, there was
a noticeable increase in the temporal extent of the trailing edges. The increase
in the temporal extent of the trailing edges was evident all the way back to the
disturbance source location. Aside from the more extended trailing edges, the space–
time development was comparable to that denoted by Lingwood (1996). In this
case as RcA

was approached, the temporal extent (t/T ) of the wave packets was
approximately 22 % larger than in the previous low-amplitude case. Just beyond RcA

,
the temporal extent of the trailing edge of wave packets was still 13 % larger than
wave packets with the lower initial disturbance. Although the trend agrees better with
Lingwoods’s experiment, it is not conclusive that the rate of temporal spreading of
the wave packet trailing edges was increasing.

The space–time development of the peak amplitude of the wave packets for this
higher initial disturbance condition offers a different perspective. With the lower
initial disturbance condition, there were no distinguishing features in the wave packet
amplitude near RcA

. In contrast to that, with the higher initial disturbance amplitude,
we observed an abrupt increase in the wave packet amplitude at large times where
we expect the accelerated spreading of the trailing edge.

Is this evidence of the absolute instability? Or possibly is this rapid growth in
amplitude brought on by higher amplitudes that triggered the global mode predicted
by Pier (2003)? The spectra that was used to document the spatial development of
energy in the band of absolutely unstable frequencies with 1000 Hz being an example,
indicated a linear (exponential) growth in that band. The amplitude of the higher-
frequency band was approximately 40 % as large as the most amplified frequency
(533 Hz) at RecA

, so that it was not insignificant.
What triggered the difference in the growth in amplitude of the wave packets

past RecA
with the larger pulse amplitude? The amplitude of the most amplified fre-

quency was larger with the larger pulse amplitude. In addition, depending on how
you fit the spatial growth, the amplification rate increased over that with the lower-
amplitude pulse, which is not possible according to linear theory. Therefore, we might
conclude that the higher-amplitude pulse produced a weak nonlinearity at the most
amplified frequencies. These frequencies are, however, not those that are predicted to
be absolutely unstable. In fact, those frequencies appeared to be unchanged in terms
of amplitude and amplification rate with the higher pulse amplitude. Thus, it does
not appear that the energy in the higher absolutely unstable frequencies has reached
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nonlinear levels near RecA
, which is a prerequisite for the secondary absolute instability

scenario of Pier (2003). Therefore, although we can substantiate the results of the
linear simulation of Davies & Carpenter (2003), which was our primary objective,
we do not have sufficient evidence to address the question of whether the higher
amplitude condition triggered a global mode.

5. Conclusions
The experiment was designed to study the role of the absolute instability on transi-

tion to turbulence of the flow over a rotating disk. This was in light of inconsistent
observations in the present experiment and by others, of transition Reynolds numbers
for low-disturbance (‘clean’ disk) conditions that exceeded RcA

by 6–8 %. In addition,
the linear numerical simulation by Davies & Carpenter (2003) indicates that the
absolute instability of the disk flow is not sustained for long times and that convective
behavior dominates.

The experiment verified a new approach for introducing temporal disturbances
through air pulses that were introduced above the disk, outside the boundary
layer. This eliminated any stationary disturbances that might come by placing the
disturbance generator on the disk surface. Two pulse amplitudes were used. The lower
amplitude was verified to produce disturbance wave packets that had linear charac-
teristics. This was important to allow a direct comparison to the linear simulations.

The disturbance wave packets that were produced by the low-amplitude pulse
agreed well with the space–time development found in Lingwood’s (1996) experiment
up to approximately 95 % of RcA

. However, rather than an acceleration of the trailing-
edge spreading of the wave packet that had been extrapolated by Lingwood as RcA

was further approached, we observed a deceleration of the trailing-edge spreading
towards an asymptote past RcA

. This result agrees with the observations of Davies &
Carpenter (2003). The space–time development of the maximum of the wave packet
amplitude envelope showed a linear spreading with no abrupt changes in amplitude
near RcA

. The maximum amplitude occurred at approximately R = 530, which was
past RcA

, and close to the transition Reynolds number that been had observed for the
basic flow (539).

The higher initial disturbance amplitude produced larger temporal spreading of
the wave packets all the way down to the source location. Otherwise, the space–time
development was similar to the case with the lower initial amplitude. However within
5 % of RcA

, the temporal extent of the wave packets continued to grow, and was
approximately 22 % larger than in the previous low-amplitude case. Although the
trend agreed better with Lingwood’s experiment, it is not conclusive that the rate
of temporal spreading of the wave packet trailing edges was increasing. However,
an abrupt increase in the maximum amplitude of the wave packet was observed
just beyond RcA

that was not present at the lower initial amplitude. This suggests
that the amplitude development was not purely convective. In this case, the initial
amplitude development of the most amplified frequencies appeared weakly nonlinear.
However, the higher frequencies that are expected to be absolutely unstable continued
to show linear characteristics with the higher initial amplitude. Therefore, they do
not to appear satisfy the conditions of Pier (2003) that are required to excite a global
instability in this case.
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